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Abstract. Recent development of image-to-image translation techniques
has enabled the generation of rare medical images (e.g., PET) from
common ones (e.g., MRI). Beyond the potential benefits of the reduction
in scanning time, acquisition cost, and radiation exposure risks, the
translation models in themselves are inscrutable black boxes. In this
work, we propose two approaches to demystify the image translation
process, where we particularly focus on the T1-MRI to PET translation.
First, we adopt the representational similarity analysis and discover that
the process of T1-MR to PET image translation includes the stages of
brain tissue segmentation and brain region recognition, which unravels
the relationship between the structural and functional neuroimaging
data. Second, based on our findings, an Explainable and Simplified Image
Translation (ESIT) model is proposed to demonstrate the capability of
deep learning models for extracting gray matter volume information and
identifying brain regions related to normal aging and Alzheimer’s disease,
which untangles the biological plausibility hidden in deep learning models.
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1 Introduction

Recent advances in deep learning have brought the magic leap to various research
areas such as computer vision and natural language processing. In these days,
we have witnessed the great performance of deep learning models [27,18,26]
for making translation from T1-weighted magnetic resonance (T1-MR) images
towards 18-fluorodeoxyglucose proton emission tomography images (FDG18-PET)
(FDG18-PET is abbreviated to PET unless stated otherwise). Typically, the T1-
MR imaging, a type of structural magnetic resonance imaging (MRI) scan, is an
anatomical image used to observe the brain structures, thus being known as one
of the structural imaging ; while PET studies the in vivo glucose metabolism,
which is correlated with neuronal activity and stimulus intensity [24], thus being
defined as functional imaging. Yet these two imaging techniques are different
in terms of their physical and biological characteristics, it remains unexplored
to understand the mechanism behind deep-learning-based translation models
of bridging the difference between structural and functional images, in which
it motivates us to demystify such image translation process, as the main goal



2 Kao et al.

of this paper. The basic idea behind our research framework is illustrated in
Figure 1.

Fig. 1: We propose to lay the explanatory
groundwork for the cross-modal medical
image translation model by exploring the
biological plausibility behind the deep
neural net. We experimentally validate
our proposed hypotheses that the T1-MR
to PET translation comprises successive
recognition of the brain tissue types and
the brain regions.

Fig. 2: Figure (a) shows the 2D joint
histogram of values from corresponding
T1-MR and PET image pixels, while it
is further colorized by the probability of
pixels belonging to different tissue types
(i.e., white matter (WM) be purple, gray
matter (GM) be cyan, and CSF be yellow)
and shown in (b).

Our study begins with building a 2D joint histogram between the values
obtained from the corresponding T1-MR and PET image pixels. In Figure 2,
we observe three clusters which are associated to cerebro-spinal fluid (CSF) and
brain tissues. We therefore have our first hypothesis: during image translation,
the model would first recognize (or segment) the areas related to various brain
tissue types. Nevertheless, as these clusters are not compact and their boundaries
are blurry, merely having the tissue regions as the intermediary can not conclusively
reason the translation between images. We hence step further and hypothesize:
as different brain regions (e.g., thalamus, insula, or putamen) have different
baseline uptake of glucose, there would be an in-between stage of brain regions
identification followed by performing region-dependent transformation.

We experimentally verify our hypotheses using the representational similarity
analysis, thus contributing to decipher the black box translation model. Moreover,
we advance to leverage these two hypotheses by building up an Explainable
and Simplified Image Translation (ESIT) model. With ESIT model, we
look into its learnt feature representations and discover their close relationship
with the gray matter volume as well as the informativeness on clinical status.

2 Related Works

Image Translation in Medical Domains. Image-to-image translation is the
task of transforming the images from one domain to the ones of another domain



Demystifying T1 to PET Image Translation 3

with distinct characteristics/styles, i.e. mapping between image domains. Several
approaches [17,18,25,26,10] have been proposed to translate images from T1-MR
to PET, where most of them are based on U-Net architecture [21] with using the
paired data (i.e. cross-domain correspondences). Instead of pushing forward the
model performance on T1-MR to PET image translation, our primary goal is to
explore the underlying mechanism of deep-learning-based translation methods.
Therefore, our research focuses on the typical U-Net structure that is widely
used as a building block for various translation models.
Analysis of Representational Similarity for Deep Networks. To better
characterize deep learning models, various methods have been proposed to analyze
the optimization process or the internal organization of neural networks, such as
filter visualization [29,28] or saliency maps [1,22]. However, as these approaches
are developed mainly for classification models, their direct application on image-
to-image translation models is challenging since the high-dimensional structural
and semantic information are substantially entangled during translation. Recently,
Canonical Correlation Analysis (CCA) has emerged as a robust tool to study the
similarity of representations within a deep network or across networks, as CCA
measures the multivariate joint relationship among variables/representations via
maximizing the correlation between their projections. In our study, we take
advantage of CCA to calculate the per-layer representational similarity scores
with respect to brain tissue maps and brain region templates.

3 Image Translation Model, Dataset, and Analysis Tool

As motivated previously, we propose to analyze the trained U-Net model of
T1-MR to PET image translation by exploring its layer-wise representational
similarity with respect to medically interpretable concepts, i.e., the brain tissue
maps and the brain region templates. In this section, we provide the details of
the U-Net model, the dataset in use, and CCA as our analysis tool.

U-Net Model for T1-MR to PET Image Translation. As the basis for
our study, we start off with training the U-Net model for performing image
translation from T1-MR to PET images. We adopt the typical U-Net architecture
proposed in [21] but substitute its batch normalization, ReLU activation, and
those convolution layers followed by the maxpooling operation with the instance
normalization (IN), Leaky ReLU (LR) activation, and strided convolution layers,
respectively. Such U-Net model is trained to minimize the L1 loss with AdamW
optimizer [11] for 40 epochs over five-fold cross-validation. The quantitative
metrics used for evaluating the translation performance are mean square error
(MAE), peak signal-to-noise ratio (PSNR), and structure similarity index (SSIM).

Alzheimer’s Disease Neuroimaging Initiative Dataset. The paired T1-
MR and PET images are obtained from the Alzheimer’s Disease Neuroimaging
Initiative dataset (ADNI [9]) including ADNI-1, ADNI-2, ADNI-GO, and ADNI-
3 phases. Overall, we include the data of cognitively normal (CN, n=300) subjects
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and subjects diagnosed as significant memory concern (SMC, n=54), mild cognitive
impairment (MCI, n=868) and Alzheimer’s disease (AD, n=219).

Preprocessing. We follow standard procedure to perform image preprocessing
using the SPM 12 software [19]. PET images are coregistered to the corresponding
T1-MR images. Then, T1-MR images are transformed to Montreal Neurological
Institute (MNI) reference space with the voxel size resliced to 1.5×1.5×1.5mm3,
and the estimated deformation field is applied to the aligned PET images. Skull-
stripping and cerebellum removal are performed to all PET images as indicated
in [18]. Min-Max normalization of pixel values to the range [0, 1] is performed
to all T1-MR images and PET images.

Brain Tissue Maps and Brain Region Templates. The subject-specific
probabilistic maps of gray matter (GM), white matter (WM) and CSF are
obtained from the T1-MR image segmentation by SPM. For brain region templates,
we utilize Automated Anatomical Labeling (AAL3) [20] and Hammersmith atlas [8],
which are resliced to match the spatial resolution of T1-MR images.

Canonical Component Analysis. Canonical Component Analysis (CCA)
measures the relationship between two variables by finding a canonical space in
which the correlation between their projections onto that space is maximized.
Given two centered random vectorsX andY of dimensionsm and n respectively,
where X = (x1, ..., xm)T and Y = (y1, ..., yn)

T , CCA seeks pairs of projection
weight vectors ai ∈ Rm and bi ∈ Rn iteratively to maximize the correlation
coefficient between aTi X and bT

i Y, under the orthogonality constraints that
∀j < i,aTi X ⊥ aTj X and bT

i Y ⊥ bT
j Y. For 1 ≤ i ≤ min(m,n), the ith canonical

correlation coefficient ρi is therefore given by:

ρi = max
< ui,vi >

‖ui‖‖vi‖
= max

(aTi X)(bT
i Y)T

‖aTi X‖‖bT
i Y‖

(1)

where ui = aTi X and vi = bT
i Y are called canonical components.

In details, the activation maps from a network are concatenated along spatial
dimension to form d × h × w vectors with dimension c, denoted by L (where
d, h, w, c are respectively the number of datapoint, height, width, and the number
of channels). The brain tissue maps and the brain region templates are flattened
into d × h × w vectors with dimension 1, denoted by K. We use CCA to find
the projection weight vectors w1 ∈ Rc and w2 ∈ R1, such that the correlation
coefficient ρ = max (wT

1 L)(wT
2 K)T

‖wT
1 L‖‖wT

2 K‖ is maximized.
We name the correlation coefficient ρ as CCA similarity , since such values

reflect the degree of correlation between two random variables in a canonical
coordinate space. To avoid interference by zero-valued regions (i.e., pixels of air
and bone), we remove the data point which is neither brain tissues nor CSF.
Due to the expensive computational cost, for each model, we randomly sample
20 subjects from corresponding training data and retrieve their activation maps
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of every layer (after Leaky ReLU operator) from the translation model. The
standard deviation of the CCA similarities is plotted as the shaded region.

4 Demystification from a Medical Perspective

(a) CCA similarity of activation maps against
T1-MR images, PET images, and brain tissue
maps. Please refer to Section 4.1 for more
detailed discussion.

(b) CCA similarities between the per-layer
activation maps and the brain region templates.
Please refer to Section 4.3 for more detailed
discussion.

Fig. 3: Per-layer CCA similarity scores of per-layer activation maps

4.1 Brain Tissues Are Segmented in the Early Encoding Stage

To verify our first hypothesis that, during the translation process, the translation
model would first recognize the areas related to brain tissue types, our work
begins with showing the CCA similarity scores of per-layer activation maps with
respect to the brain tissue maps and the T1-MR/PET images, as provided in
Figure 3a. We have several observations: (1) The increase of CCA scores between
the activation maps and the gray matter maps (i.e., the curve in green color)
in the early encoding stage (i.e., from layer actv1 to actv3 ), indicating that the
translation model learns to recognize the gray matter distribution; (2) In the
encoding stage, the trend of CCA similarity between the activation maps and
the gray matter maps is similar to the one between the activation maps and
the PET images (i.e., the curve in orange color). Such observation echoes the
physical principle [13] that gray matter has higher metabolic activity, which PET
imaging aims to capture. To further understand the information captured by the
translation model, we show the canonical components of the actv3 activation
maps in Figure S1 of supplement, which highly resemble the tissue maps.

4.2 Brain Tissue Information Is the Key to PET Image Synthesis

Based on our observation that the translation model learns to represent the tissue
type information in the early encoding stage, we wonder if the tissue information
alone is sufficient for PET image synthesis. As shown in the first two columns in
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Table S1 of supplement, the performance of the U-Net-based translation model
which is directly trained on tissue maps as input is competitive to the original
translation model (i.e., trained by taking T1-MR images as input), verifying our
assumption that the brain tissue information is the key to PET image synthesis.

4.3 Brain Regions Are Recognized Later in the Translation

In Figure 3a, we observe a steady increase in the per-layer CCA similarity with
PET images (denoted by the orange curve), while the per-layer CCA similarity
with the gray matter maps (denoted by the green curve) declines, suggesting
that the tissue type information as the intermediary might not be enough to
conclusively reason the transformation from T1-MR to PET. Inspired by the
findings from previous medical researches [3,23] that certain brain regions (e.g.,
the basal ganglia, posterior cingulate cortex, and visual cortex) have variations
in baseline glucose uptake, we propose our second hypothesis: there could be
an in-between stage of identifying brain regions, followed by performing region-
dependent transformation to infer the final PET image.

To verify this hypothesis, the per-layer CCA similarity scores with respect to
brain region templates are computed, and are provided in Figure 3b. We observe
that the translation model represents most of the brain region information in
the bottleneck (i.e., from layer actv9 to actv12 ). Remarkably, the per-layer CCA
similarity scores with respect to the thalamus (denoted by the green curve)
and putamen (denoted by the orange curve) are relatively high and sustained
even in the late decoding stage, consistent with the finding that the thalamus
and putamen have slightly higher metabolism activity [3]. To better understand
the encoded brain region information in the translation model, the canonical
components learnt from CCA are shown in Figure S2 of supplement. Intriguingly,
from the visualization of layer actv15 regarding the brain regions of caudate
nucleus and putamen, we can observe co-occurrence of caudate nucleus and
putamen in the feature space of the translation model. This echoes the well-
documented fact that the caudate nucleus and putamen (which together are
referred to as the striatum) act jointly in function as the major input zone for
basal ganglia [5,6]. With the aforementioned analysis, we validate our second
hypothesis that in the cross-modal medical image translation, there is likely an
in-between stage of identifying and representing brain regions.

5 Explainable and Simplified Image Translation Model

Via CCA analysis, we validate our two main hypotheses that the translation
from T1-MR images to PET ones includes the recognition of the brain tissues and
regions. Yet, U-Net-based model comprises an entangled process of segmentation
and transformation, it is challenging to further analyze the information related
to brain tissue types and brain regions from the feature maps of the model.

To address such issue, we propose an Explainable and Simplified Image
Translation (ESIT) model, where the information of the brain tissue types and
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Fig. 4: (a) Illustration of the spatial encoding. (b) Overview of our
Explainable and Simplified Image Translation (ESIT) model.

brain regions are explicitly unraveled and tackled in our model design. The
architecture of our proposed ESIT model is illustrated in Figure 4. The ESIT
model takes both the brain tissue maps and the spatial encoding as inputs. The
spatial encoding is an H ×W × 3 map that transforms the pixel coordinates of
the T1-MR image (of size H×W ) into the universal brain coordinate system (as
illustrated in Figure 4 (a)). In the ESIT model, the input map of spatial encoding
is passed through several convolution layers and then becomes the regional
attention map. On the other hand, the input tissue maps are transformed into
the tissue embeddings by a shallow network. We integrate the regional attention
maps and the tissue embeddings via channel-wise multiplication followed by
a 1 × 1 convolution layer, then we obtain the final PET output. Simple as it
may seem, our ESIT model attains competitive performance compared to the
U-Net-based translation model (cf. Table S1 of supplement). Our ESIT provides
a more straightforward and more explainable way to understand the underlying
mechanism of T1-MR to PET image translation, which we will detail later.

5.1 Extraction of Regional Gray Matter Volume Information from
Brain Tissue Maps

As our dataset comprises of images of subjects with a wide spectrum of clinical
status, the good performance of deep models implies that the information of
structural abnormality (e.g., gray matter volume, gray matter thickness) could
be well extracted from the T1-MR images or brain tissue maps. Hence, we
roll out experiments with a focus on the hippocampus and amygdala, the two
brain regions susceptible to structural changes due to AD [4], to explore the
associations between the tissue embeddings and the gray matter volume (obtained
with Computational Anatomy Toolbox (CAT12) [7]) as well as the clinical status.

We visualize the tissue embeddings of the hippocampus and amygdala regions
in Figure S3 of supplement, where we observe that the tissue embeddings are
fairly likely to correlate with the gray matter volume as well as the clinical
status of subjects in both areas. Such observation has its corresponding medical
explanation: as PET is used to measure the brain metabolism (mostly synaptic
activities [15]) and our tissue embeddings are contributing to the synthesis of
PET images, the decrease in gray matter volume which reflects the loss of
synapses and neurons can hence be captured by our tissue embeddings.
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5.2 Regional Attention on Metabolic Variation in Aging and AD

Fig. 5: The visualization of (a) tissue embedding maps (top) and regional
attention maps (bottom) learnt by our ESIT model, from axial view. (b)
The tissue embeddings and regional attention maps from sagittal view.

In this section, we revisit the brain region identification process using our
proposed ESIT model, in which the regional information is processed independently
such that we can focus more on the learnt regional patterns. In Figure 5, we show
the learnt tissue embeddings as well as regional attention maps from axial and
sagittal views. The tissue embeddings mostly follow the distribution of brain
tissues and CSF. For regional attention maps, we summarize the four typical
brain region patterns:

– Regions with normal variation. Channel #2 reveals the pallidum, caudate
nucleus and putamen, all of which are the main components of the basal
ganglia that have high metabolic activity in healthy population [3].

– Regions with preserved metabolism during aging. In channel #1, attention
is given to the bilateral occipital lobes, thalamus, pallidum and heschl’s
gyrus, which are relatively unaffected during aging [3,12]. Likewise, channel
#4 focuses on the superior frontal gyrus, superior temporal gyrus, and
lingual gyrus, all of which has relatively preserved metabolism in aging
population [12].

– Aging-related regions. Channel #9 mainly focuses on the anterior cingulate
gyrus, the region with profound metabolic decrease during aging [16].

– AD-related regions. Channel #8 focuses on the posterior cingulate gyrus
and precuneus regions, and both of them have the most reduction in glucose
metabolism in subjects with AD [16,14,2].

These results show that our ESIT model identifies four typical patterns of
regional hyper-metabolism or hypo-metabolism and thus reinforces our proposed
hypothesis that there is region-dependent transformation for inferring the final
PET images. We humbly conclude that the deep learning translation models are
reasonably plausible from a medical perspective, where they learn to capture
the characteristics of the regional metabolic differences such as normal regional
variation, age-related change, and dementia-related regional alterations.
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6 Conclusion

In this paper, we conduct extensive experiments using representational similarity
to verify our proposed hypotheses that the translation from T1-MR to PET
images comprises the recognition of brain tissue types and brain regions in
its process, laying the explanatory groundwork for cross-modal medical image
translation. Based on our findings, we propose a concise and more interpretable
model, ESIT, and further demonstrate the capability of deep learning technique
in extracting regional gray matter volume information and identifying the regional
metabolic variation in normal, aging and dementia population.
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